ACI 318 Page: 1 ## <u>Cracking Moment Strength for Prestressed Sections as per ACI 318-11 Chapter 18</u> ## **System** | Width of Concrete Section, b= | | 12.0 in | |---|---|-----------------------| | Depth of Concrete Section, h= | | 24.0 in | | Concrete Cover, co= | | 2.0 in | | Effective Depth of Concrete Section, d= h-co = 24.0-2.0 | = | 22.0 in | | Number of Strands, n= | | 6.0 | | Area of One Strand, A _s = | | 0.153 in ² | ## **Material Properties** | Concrete Strength, f' _c = | | | 5000 psi | |--|--|---|------------| | Tensile Strength of Prestressed | Steel, f _{pu} = | | 270000 psi | | Jacking Stress, J _s = | 0.7 * f _{pu} | = | 189000 psi | | Percentage of Losses, L _s = | | | 20.00 % | | Modification Factor for Lightweig | ht Concrete, λ= | | 1.00 | | Modulus of Rupture (According t | o Eq. 9-10 of ACI318), $f_r = 7.5 \times 10^{10} \text{ m}^{-1}$ | = | 530 psi | #### **Calculation of Cracking Moment Strength** | Area of Concrete, A _c = | b * h | $= 288.0 \text{ in}^2$ | |--|---|-------------------------| | Concrete Section Modulus, S _b = | b * h ² / 6 | $= 1152.0 \text{ in}^3$ | | Eccentricity of Prestressing, e= | h/2 - co | = 10.0 in | | Effective Prestress Force, P _{se} = | (1-L _s /100) * n * A _s * J _s / 1000 | = 138.8 kips | | Cracking Moment Strength, M _{cr} = | $\left(\frac{f_{r}}{1000} + \frac{P_{se}}{A_{c}}\right) * \frac{S_{b}}{12} + P_{se} * \frac{e}{12}$ | = 212.8 kip*ft | #### **Calculation Summary** Cracking Moment Strength, $$M_{cr} = M_{cr} = 212.8 \text{ kip*ft}$$