Design of Continuous Deep Beam by the Strut-and-Tie Model as per ACl318 Appendix A

System

Width of Deep Beam, b=	24.0 in
Height of Deep Beam, h=	144.0 in
Concrete Cover, co=	1.25 in
Depth of Deep Beam, d= h-co	$=142.75$ in
Upper End Distance of Truss Model, $\mathrm{x}_{1}=$	6.0 in
Lower End Distance of Truss Model, $\mathrm{x}_{2}=$	9.0 in
Span of Deep Beam, $L_{n}=$	24.0 ft
Exterior Planted Column Width, $\mathrm{b}_{\mathrm{c} 1}=$	24.0 in
Interior Planted Column Width, $\mathrm{b}_{\mathrm{c} 2}=$	56.0 in
Distance between Supports of Deep Beam, $\mathrm{L}_{\mathrm{s}}=$	24.0 ft
Support Column Width, $\mathrm{b}_{\mathrm{s}}=$	48.0 in
Support Column Depth, $\mathrm{d}_{\mathrm{s}}=$	24.0 in

Load

Dead Load for Exterior Column, $\mathrm{P}_{\mathrm{D} 1}=$
100.0 kips

Live Load for Exterior Column, $\mathrm{P}_{\mathrm{L} 1}=$ 237.5 kips

Ultimate Load for Exterior Column, $\mathrm{P}_{\mathrm{u} 1}=$ $1.2 * P_{\mathrm{D} 1}+1.6 * P_{\mathrm{L} 1}=500.0 \mathrm{kips}$

Dead Load for Interior Column, $\mathrm{P}_{\mathrm{D} 2}=$ 750.0 kips

Live Load for Interior Column, $\mathrm{P}_{\mathrm{L} 2}=$ 1000.0 kips

Ultimate Load for Interior Column, $\mathrm{P}_{\mathrm{u} 2}=$
Support Column Ultimate Load, $\mathrm{P}_{\mathrm{u}}=$
$1.2{ }^{*} \mathrm{P}_{\mathrm{D} 2}+1.6{ }^{*} \mathrm{P}_{\mathrm{L} 2}$
$=2500.0 \mathrm{kips}$
$P_{u 1}+P_{u 2} / 2$
$=1750.0 \mathrm{kips}$

Material Properties

Concrete Strength, $\mathrm{f}_{\mathrm{c}}=$
4000 psi
Yield Strength of Reinforcement, $\mathrm{f}_{\mathrm{y}}=$

Strength Reduction Factor (According to CI.9.3.2 of ACI318), $\Phi=$
Modification Factor for Lightweight Concrete, $\lambda=$ 1.00

Friction Factor (According to Cl.11.6.4.3 of ACl318), $\mu=1.4^{*} \lambda=1.40$

Check Deep Beam Requirements

Check on Height of Deep Beam Requirements (According to CI 11.7.1 of ACI 318),
R = IF(12*Ln/h<4; "Deep Beam Design"; "Normal Beam Design") = Deep Beam Design

Calculation of Effective Concrete Strength

(According to CI.A.3.2 of ACl 318) Factor of, $\beta_{\mathrm{s}}=$
Effective Concrete Strength (According to Eq.A-3 of ACI 318)
$\mathrm{f}_{\mathrm{ce} 1}=\quad 0.85{ }^{*} \beta_{\mathrm{s}}{ }^{*} \mathrm{f}_{\mathrm{c}}{ }^{\circ} \quad=\quad 3400 \mathrm{psi}$
Calculation of Effective Concrete Strength for Nodal Zones
For Nodal Zone IV Bounded by Three Struts (C-C-C Nodal Zone)
(According to CI.A.5.2.1 of ACI318) Factor of, $\beta_{n}=\quad 1.00$
Effective Concrete Strength (According to Eq.A-3 of ACI 318),
$\mathrm{f}_{\mathrm{ce} 2}=\quad 0.85{ }^{*} \beta_{\mathrm{n}}{ }^{*} \mathrm{f}^{\prime}{ }_{\mathrm{c}} \quad=3400 \mathrm{psi}$
For Nodal Zone A\&B Bounded by Three Struts (C-C-T Nodal Zone)
(According to CI.A.5.2.2 of ACl318) Factor of, $\beta_{\mathrm{n}}=\quad 0.80$
Effective Concrete Strength (According to Eq.A-3 of ACI 318),
$\mathrm{f}_{\mathrm{ce} 3}=\quad 0.85{ }^{*} \beta_{\mathrm{n}}{ }^{*} \mathrm{f}^{\prime}{ }_{\mathrm{c}} \quad=\quad 2720 \mathrm{psi}$
Minimum Effective Concrete Strength, $\mathrm{f}_{\mathrm{ce}}=\quad \operatorname{MIN}\left(\mathrm{f}_{\mathrm{ce} 1} ; \mathrm{f}_{\mathrm{ce} 2} ; \mathrm{f}_{\mathrm{ce} 3} ;\right) \quad=2720 \mathrm{psi}$

Calculation of Forces in Struts

For Node IV Will Carry Exterior Column Load Strut, Fa $=P_{u 1}$	$=500.00 \mathrm{kips}$
For Node IV Other Struts B and C, Fbc $=$	$0.5^{*}\left(P_{u}-\right.$ Fa $)$

Check Width of Struts at Node IV

Width of Strut a, Wsa=	Fa*1000	$=10.21 \mathrm{in}$	
	$\overline{\Phi^{*} f_{c e}{ }^{*} b}$		
	Fbc*1000		
Width of Strut b\&c, Wsbc=	$\Phi^{*} \mathrm{f}_{\mathrm{ce}}{ }^{*} \mathrm{~b}$	=	12.77 in
Total Width of Struts, Ws=	Wsa + Wsbc *2	$=$	35.75 in
Check Validity=	IF(Ws<bs; "Valid"; "Invalid")	=	Valid

Check Width of Struts at Node I

Width of Strut, WsI=	$\frac{P_{u 1}{ }^{* 1000}}{\Phi^{*} f_{c e}{ }^{*} \mathrm{~b}}$	$=10.21 \mathrm{in}$
Check Validity=	$\mathrm{IF}\left(\mathrm{WsI}<\mathrm{b}_{\mathrm{c} 1} ;\right.$ "Valid"; "Invalid")	$=\quad$ Valid

Check Width of Struts at Node II

Width of Strut, WsII=	$\frac{\mathrm{P}_{\mathrm{u} 2}{ }^{*} 1000}{\Phi^{*} \mathrm{f}_{\mathrm{ce}}{ }^{* \mathrm{~b}}}$
Check Validity=	$\mathrm{IF}\left(\mathrm{WsII<b}_{\mathrm{c} 2} ; ~ " V a l i d " ; ~ " I n v a l i d "\right) ~$

Calculation of Force in Strut I-IVa and Tie I-Ila

	$\left(L_{n}{ }^{*} 2-L_{s}\right) * 12$	
Horizontal Projection of Strut I-IVa, Lhiiva=	$\frac{2}{2}-$ Wsbc	$=131.23$ in
Vertical Projection of Strut I-IVa, Lviiva=	$\mathrm{h}-\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)$	$=129.00 \mathrm{in}$
Horizontal Force in Strut I-IVa and Tie I-Ila, Fiiva=	$\mathrm{P}_{\mathrm{u} 1} * \frac{\text { Lhiiva }}{\text { Lviiva }}$	$=508.64 \mathrm{kips}$
Length of Strut I-IVa, Liiva=	$\sqrt{\text { Lhiiva }^{2}+\text { Lviiva }^{2}}$	$=184.02 \mathrm{in}$
Compression Force in Strut I-IVa at Node I, Fi=	$\frac{\mathrm{P}_{\mathrm{u} 1}{ }^{*} \text { Liiiva }}{\mathrm{h}-\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)}$	$=713.26$ kips
Check Validity= IF(Fi<f ce ${ }_{\text {c }}$ "Valid"; "	nvalid")	$=\quad$ Valid

Calculation of Width of Strut Ila-IVb

Horizontal Projection of Strut Ila-IVb, Lhiiaivb=	$\frac{\left(L n^{*} 2-L s\right) * 12}{2}-\frac{\text { Wsll *3 }}{8}=124.9 \mathrm{in}$
Vertical Projection of Strut IIa-IVb, Lviiaivb $=$	$h-\left(x_{1}+x_{2}{ }^{* 2}\right)$
Vertical Force in Strut Ila-IVb, Fiiaivb=	Fiiva* $\frac{\text { Lhiiaivb }}{\text { Lviiaivb }}$

Calculation of Width of Strut Ila-IVc

Horizontal Projection of Strut Ila-IVb, Lhiiaivb=	$\frac{\left(L_{n}{ }^{*} 2-L_{s}\right) * 12}{2}-\frac{\mathrm{Wsll}{ }^{* 3}}{8}=124.9 \mathrm{in}$
Vertical Projection of Strut Ila-IVb, Lviiaivb=	$\mathrm{h}-\left(\mathrm{x}_{1}+\mathrm{x}_{2}{ }^{* 2}\right)$
Vertical Force in Strut Ila-IVb, Fiiaivb=	Fiiva* $\frac{\text { Lhiiaivb }}{\text { Lviiaivb }}$

Calculation of Width of Strut Ilb-IVc

Horizontal Projection of Strut Ila-IVb, Lhiiaivb=	$\frac{\left(L_{n}{ }^{*} 2-L_{s}\right) * 12}{2}-\frac{\mathrm{Wsll}{ }^{* 7}}{50}=136.9 \mathrm{in}$
Vertical Projection of Strut IIa-IVb, Lviiaivb=	$\mathrm{h}-\left(\mathrm{x}_{1}+\mathrm{x}_{2}{ }^{* 2}\right)$
Vertical Force in Strut Ila-IVb, Fiiaivb=	$\mathrm{Fi}^{*} \frac{\text { Lhiiaivb }}{\text { Lviiaivb }}$

Calculation of Width of Tie IVc-Va

Force in Tie IVc-Va, Fivcva=

$$
\frac{\text { Fiiaivb*1000 }}{\Phi^{*} \mathrm{f}_{\mathrm{ce}}{ }^{*} \mathrm{~b}} \quad=16.62 \mathrm{in}
$$

Calculation VL. and HZ. Reinforcement to Resist Splitting of Diagonal Struts

1. Vertical Reinforcement

Angle of Strut, $\alpha=$

Provided Reinforcement, Bar=
Provided Reinforcement, $\mathrm{A}_{\text {sbv }}=$
Number of Bars, $\mathrm{n}_{\mathrm{v}}=$
Vertical Reinforcement, $\mathrm{A}_{\mathrm{sv}}=$
$A_{s b v}{ }^{*} n_{v}$
Provided Spacing between Bars, $s=$

		46.600°
SEL("ACI/Bar"; Bar;)	$=$	No.5
TAB("ACI/Bar"; Asb; Bar=Bar)	$=\quad 0.31 \mathrm{in}^{2}$	
		2

$=0.00177$
$=\quad$ No. 5
$=0.31 \mathrm{in}^{2}$
$=0.62 \mathrm{in}^{2}$ 10.00 in

Horizontal Reinforcement (According to Eq.A4 of ACI318),
$H Z=$
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{b}^{*} \mathrm{~s}} * \sin (\alpha)$
IF(VL+HZ>0.003; "Valid"; "Invalid")
$=0.00188$
$=\quad$ Valid

$$
\begin{aligned}
& =11.30 \mathrm{in}^{2} \\
& =\quad \text { No.9 } \\
& =12.00 \\
& =1.00 \mathrm{in}^{2} \\
& =12.00 \mathrm{in}^{2} \\
& =\quad \text { Valid }
\end{aligned}
$$

Design Summary

Provided Vertical Reinforcement, $\mathrm{A}_{\mathrm{sv}}=$	A_{sv}	$=0.62 \mathrm{in}^{2}$
Provided Horizontal Reinforcement, $\mathrm{A}_{\mathrm{sh}}=$	A_{sh}	$=0.62 \mathrm{in}^{2}$
Provided Tension Reinforcement, $\mathrm{A}_{\text {sprov }}=$	$\mathrm{A}_{\text {sprov }}$	$=12.00 \mathrm{in}^{2}$

