Design of a Shear Lug for Base Plates Subjected to Axial and Shear Loads

Loads

Dead Load, P _D =	120 kips
Live Load, P _L =	150 kips
Shear Load, V _w =	55 kips

Base Plate Material Properties

Grade:	SEL("Material/ASTM"; NAME;)	=	A36
Yield stress, f _{vp} =	TAB("Material/ASTM";F,;:NAME=Grade)	=	36 ksi

Column, Base Plate and Pedestal Dimensions

Concrete strength for pedestal (f'c):

f' _c =	3 ksi
Base plate depth, N=	14 in
Base plate width, B=	14 in
The coefficient of friction, μ =	0.55
Shear lug width, W=	8 in
Grout depth. G=	1.0 in

The Portion of The Shear which can be Transferred by Friction Equal to μ :

$$V_{lou}$$
 = 1.3* $V_w - \mu^* (0.9^* P_D)$ = 12.1 kips

The Required Bearing Area

$$\Phi_{c} = 0.60$$

$$A_{lgu} = \frac{V_{lgu}}{0.85 * \Phi_{c} * f'_{c}} = 7.9 \text{ in}^{2}$$

The Height of The Bearing Portion

$$H= A_{lgu}/W = 0.99 \text{ in}$$

Base Plate Thickness

$$M_{lgu} = \frac{v_{lgu}}{W} * \frac{H + G}{2} = 1.5 \text{ kip*in}$$

$$t_{lg} = \sqrt{\frac{4 * M_{lgu}}{0.9 * f_{vp}}} = 0.43 \text{ in}$$

