

Ultimate U	Iniform Load, w _u		
Bear	n Span (L)		d
d			<u> </u>
φVc ¢		b	
	Shear Force Diagram		
x _c t	C.L		
tem			
Width of Concrete Section,			13.0 in
Depth of Concrete Section,	h=		22.5 in
Concrete Cover, co=			2.5 in
	Section, $d = h - co = 22.5 - 2.5$	=	20.0 in
Beam Span, L=			30.0 ft
id			
Ultimate Uniform Load, w _u =			4.5 kip/ft
Ultimate Shear Force at Sup		=	67.5 kips
Ultimate Shear Force at Dis	tance [d] from Support, $V_u = V_{ui} - w_u^*(d/12)$	=	60.0 kips
erial Properties			
Concrete Strength, f' _c =			3000 psi
Yield Strength of Reinforcer	nent, f _y =		40000 psi
Shear Strength Reduction F	actor (According to Cl.9.3.2 of ACI318), Φ =		0.75
Modification Factor for Light	weight Concrete, $\lambda =$		1.00
Concrete Density, w _c =			150 psi
ermine Concrete Shear Streng	th		
-	vided by Concrete (According to Eq. 11-3 of AC	1318),	
V _c =	$2^{\star}\lambda^{\star}\sqrt{f_{c}}^{\star}\frac{b^{\star}d}{1000}$	=	28.5 kips
Shear Reinforcement is :	IF(V _u >Φ*V _c ;"Required";"Not Required")	=	Required
ermine Area of Shear Reinforc			
	vided by Reinforcement (According to Eq. 11-2	of ACI3	18),
5 • P •	$\frac{V_u - \Phi^* V_c}{V_u - \Phi^* V_c}$		
V _s =	<u>α - c</u> Φ	=	51.5 kips

Maximum Allowable Shear Strend	gth provided by Reinforcement (According to	CI.11	.4.7.9 of ACI318).
		•	
V _{s_max} =	$8*\sqrt{f_c}*\frac{b*d}{1000}$	=	113.9 kips
IF(V _s >V _{s_max} ; "Increase Beam D	imension"; "OK")	=	ОК
Spacing of Provided Stirrups, s=			6.0 in
Required Area of Reinforcement,	$A_{v} = \frac{V_{s} * s * 1000}{f_{v} * d}$	=	0.39 in ²
	(According to Cl.11.4.6.3 of ACI318),		
A _{v_min1} =	$\frac{0.75^*\sqrt{f_c}*b*s}{f_v}$	=	0.08 in ²
A _{v_min2} =	$\frac{50^{\circ}b^{\circ}s}{f_{y}}$	=	0.10 in ²
A _{v_min} =	MAX(A _{v_min1} ; A _{v_min2})	=	0.10 in ²
Required Area of Reinforcement,		=	0.39 in ²
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.4
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.20 in ²
Number of Stirrups, n=			1
Provided Area of Reinforcement	$A_{vc_Prov} = A_{sb} * n * 2$	=	0.40 in ²
Check Validity=	_ IF(A _{vc_Prov} ≥A _{vc_Req} ; "Valid"; "Invalid")	=	Valid
rmine Maximum Permissible Spac	ing of Stirrups		
· · · · ·	d by Reinforcement for Spacing Limit (Accord	ding t	o Cl.11.4.5.3 of ACI
V _{s_limit} =	$4^{\star}\lambda^{\star}\sqrt{f_{c}}^{\star}\frac{b^{\star}d}{1000}$	=	57.0 kips
Factor for Maximum Spacing of S	Stirrups, Fac=IF(V _s ≤V _{s_limit} ;1;0.5)	=	1.0
	cording to Cl.11.4.5.1 of ACI318),		
s _{max} =	MIN(d/2;24) * Fac	=	10.00 in
Check Validity=	IF(s≤s _{max} ;"Valid"; "Invalid")	=	Valid
mine Distribution Distance of She	ear Reinforcement		
Distance from Support beyond w	nich Minimum Shear Reinforcement is Requi	red,	
x _c =	$\frac{V_{ui} - \Phi^* Vc}{w_u}$	=	10.3 ft
Distance from Support bevond wi	nich Concrete can carrv Shear Force.		
Distance from Support beyond wi	nich Concrete can carry Shear Force, V _{ui} - ⊕ *Vc / 2		

Provided Area of Shear Reinforcement, A _{vc_Prov} =A _{vc_Prov}	=	0.40 in ²
Distance from Support beyond which Minimum Shear Reinforcement, $x_c = x_c$	=	10.3 ft
Distance from Support beyond which Concrete can carry Shear Force, $x_m = x_m$	=	12.6 ft