

Page: 1

<u>Design Shear Reinforcement for Slab which to resist Punching Stress around Interior Square Column</u> <u>As per ACI318-11 Chapter 11</u>

System

Column Dimension, c=		12.0) in
Thickness of Concrete Slab, h=		7.5	in in
Concrete Cover, co=		1.5	in in
Effective Depth of Concrete Section, d=	h - co = 7.5 - 1.5	= 6.0) in
Bar Diameter of Shear Reinforcement, Dia=		0.375	in i

Load

Ultimate Shear Force, V.=	120.0 kips
CHILLIAGE CHEALT CICE. V=	IZUJU NIUS

Material Properties

Concrete Strength, f' _c =	4000 psi
Yield Strength of Reinforcement, f _y =	60000 psi
Shear Strength Reduction Factor (According to Cl.9.3.2 of ACI318), Φ =	0.75
Modification Factor for Lightweight Concrete, λ=	1.00

Determine Concrete Shear Strength

$$b_1$$
= c + d = 18.0 in
Perimeter of Critical Section, b_0 = 4 * b_1 = 72.0 in

Nominal Shear Strength provided by Concrete (According to Eq. 11-33 of ACI318),

$$V_c = 4*\lambda*\sqrt{f_c}*b_0*d/1000 = 109.3 \text{ kips}$$

Punching Shear Reinforcement is : $IF(V_{II}>\Phi*V_{c};"Required";"Not Required")$ = Required

Determine Area of Shear Reinforcement

Minimum Effective Depth of Slab with Shear Reinforcement (According to Cl.11.11.3 of ACI318),

Punching Shear Strength of Slab with Shear Reinf

ACI 318

Page: 2

 d_{min} = MIN(6;16*Dia) = 6.0 in

Effective Depth of Slab : IF(d>d_{min};"Should Increase";"OK") = Ok

Maximum Shear Strength of Slab with Shear Reinforcement (According to Cl.11.11.3.2 of ACI318),

$$V_n = 6*\sqrt{f_c}*b_0*d/1000 = 163.9 \text{ kips}$$

Validity:
$$IF(V_{II}>\Phi^*V_{II};"Not Valid";"Valid")$$
 = Valid

Shear Strength provided by Concrete with Shear RFT (According to Cl.11.11.3.1 of ACI318),

$$V_{ci}$$
 = $2*\lambda*\sqrt{f_c}*b_0*d/1000$ = 54.6 kips

Nominal Shear Strength provided by Reinforcement (According to Eq. 11-2 of ACI318),

$$V_{s} = \frac{V_{u} - \Phi^{*}V_{ci}}{\Phi} = 105.4 \text{ kips}$$

Required Area of Reinforcement,
$$A_v = \frac{V_s *s *1000}{f_v *d} = 0.88 in^2$$

Required Area of Reinforcement for each side of Column, $A_{v \text{ side}} = A_{v}/4 = 0.22 \text{ in}^2$

Perimeter of Critical Section where Shear Reinforcement may be terminated,

$$b'_0 = \frac{V_u * 1000}{\Phi^* 2^* \lambda^* \sqrt{f'_c}^* d} = 210.8 \text{ in}$$

Distance from Column Face where Shear Reinforcement may be terminated,

$$= \left(\frac{b'_0}{4} - c\right) / \sqrt{2}$$
 = 28.8 in

Design Summary

Required Area of Reinforcement,
$$A_v = A_v$$
 = 0.88 in²

Distance from Column Face where Shear Reinforcement may be terminated: a = 28.8 in