

Design of Flanged Section with Tension Reinforcement only as per ACI 318-11 Chapters 9 & 10 bf bf C d h h As A٩ со со bw bw **Design as Rectangular Section Design as Flanged Section** System Width of Concrete Flange, b_f= 30.0 in Width of Concrete Web, b_w= 10.0 in Depth of Concrete Section, h= 20.0 in Thickness of Top Flange, h_f= 2.5 in Concrete Cover, co= 1.0 in Effective Depth of Concrete Section, d = h - co = 20.0 - 1.019.0 in Load Bending Moment due to Dead Load, M_D= 72.0 kip*ft Bending Moment due to Live Load, M_I = 196.0 kip*ft Ultimate Bending Moment, M_{L} = $(1.2^*M_D) + (1.6^*M_L)$ 400.0 kip*ft **Material Properties** Concrete Strength, f'_c= 4000 psi Yield Strength of Reinforcement, f_v= 60000 psi Tension Strength Reduction Factor (According to CI.9.3.2 of ACI318), Φ = 0.90 Factor for Rectangular Compressive Stress Block (According to Cl.10.2.7.3 of ACI318), IF(f'_c≤4000;0.85;IF(f'_c≥8000;0.65;1.05-0.00005*f'_c)) β₁= 0.85 **Design as Flanged Section** Compressive Strength of Flange, $C_f = 0.85 * f_c * h_f * \frac{b_f - b_w}{1000}$ 170.0 kips Area of Reinforcement for Flange in Compression, $A_{sf} = \frac{C_f}{f_v} * 1000$ 2.83 in² $\frac{A_{sf} * t_y}{12000} * \left(d - \frac{h_f}{2} \right)$ Nominal Moment for Flange, M_{nf}= 251.2 kip*ft $M_{\rm H}/\Phi$ - $M_{\rm nf}$ Nominal Moment for Web, M_{nw}= = 193.24 kip*ft

ACI 318 Page: 2

	R _{nw} =	M _{nw} *12000				
		$\Phi^* b_w * d^2$	=	/13./ psi		
	ρ_w =	$0.85 * f_{c}^{\prime} / f_{y}^{\prime} * \left(1 - \sqrt{1 - \frac{2 * R_{nw}}{0.85 * f_{c}^{\prime}}} \right)$	= 0	.0135		
	Area of Reinforcement for Web in Comp	pression, $A_{sw} = \rho_w * b_w * d$	=	2.56 in ²		
	Required Area of Reinforcement, A_{s_T} =	$A_{sf} + A_{sw}$	=	5.39 in ²		
	Depth of Rectangular Stress Block for W	/eb, $a_w = \frac{A_{sw} * f_y}{0.85 * f'_c * b_w}$	=	4.52 in		
Design as Rectangular Section						
	R _n =	$\frac{M_{U}^{*}12000}{\Phi^{*}b_{f}^{*}d^{2}}$	= 4	92.46 psi		
	ρ=	$0.85*\frac{f_{c}}{f_{y}}*\left(1-\sqrt{1-\frac{2*R_{n}}{0.85*f_{c}}}\right)$	= 0	.0089		
	Area of Reinforcement, A_{s_R} =	$\rho * b_f * d$	=	5.07 in ²		
	Depth of Rectangular Stress Block, a=	$\frac{A_{s_R} * f_y}{0.85 * f_c * b_f}$	=	2.98 in		
Section Type and Reinforcement						
	Section Design as: IF(a>h _f ; "Flang	ed Sec."; "Rectangular Sec.")	=	Flanged Sec.		
	Area of Reinforcement, A _s =	IF(a>h _f ; A _{s_T} ; A _{s_R})	=	5.39 in ²		
	Minimum Area of Reinforcement (According to CI.10.5 of ACI318),					
	A _{s_min1} =	$\frac{3^*\sqrt{f_c}^*b_f^*d}{fy}$	=	1.80 in ²		
	A _{s_min2} =	$\frac{200^* b_f * d}{fy}$	=	1.90 in ²		
	A _{s_min} =	MAX(A _{s_min1} ; A _{s_min2})	=	1.90 in ²		
	Required Area of Reinforcement, A _{sc_Re}	eq= MAX(A _s ; A _{s_min})	=	5.39 in ²		
	Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.10		
	Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	1.27 in ²		
	Number of Bars, n=			5		
	Vertical Reinforcement, A _{sc_Prov} =	A _{sb} * n	=	6.35 in ²		
	Check Validity=	IF(A _{sc_Prov} ≥A _{sc_Req} ; "Valid"; "Invalid")	=	Valid		
Check Tension Controlled						
Distance from Extreme Compression Fiber to Neutral Axis,						

Flanged Section with Tension Reinforcement Only

ACI 318 Page: 3

c=	$IF(a>h_f\!;a_w\!/\beta_1\!;\!a\!/\beta_1)$	= 5.32 in			
c/d =	c/d = 5.32/19.0	= 0.280			
IF(c/d>0.375; "Add Com. R	IF(c/d>0.375; "Add Com. RFT"; "Tension Controlled")				
Design Summary					
Required Area of Reinforce	ment, A _{sc} = A _{sc_Prov}	= 6.35 in^2			